Software Release Management
André van der Hoek, Richard S. Hall, Dennis Heimbigner, and Alexander L. Wolf

Software Engineering Research Laboratory
Department of Computer Science
University of Colorado

Boulder, CO 80309 USA
{andre,rickhall,dennis,alw} @cs.colorado.edu

University of Colorado
Department of Computer Science

Technical Report CU-CS-806-96 August 1996

(© 1996 André van der Hoek, Richard S. Hall, Dennis Heimbigner, and Alexander L. Wolf

ABSTRACT

A poorly understood and underdeveloped part of the software process is software re-
lease management, which is the process through which software is made available to
and obtained by its users. Complicating software release management is the increasing
tendency for software to be constructed as a “system of systems”, assembled from pre-
existing, independently produced, and independently released systems. Both developers
and users of such software are affected by these complications. Developers need to ac-
curately document complex and changing dependencies among the systems constituting
the software. Users will be heavily involved in the localion, retrieval, and assembly pro-
cess of the systems in order to appropriately configure the software to their particular
environment. In this paper we identify the issues encountered in software release man-
agement, and present an initial set of requirements for a software release management
tool. We then describe a protolype of such a tool that supports both developers and users
in the software release management process.

This work was supported in part by the Air Force Material Command, Rome Laboratory, and the Advanced Research
Projects Agency under Contract Number F30602-94-C-0253. The content of the information does not necessarily
reflect the position or the policy of the Government and no official endorsement should be inferred.



Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display acurrently valid OMB control number.

1. REPORT DATE
AUG 1996 2. REPORT TYPE

3. DATES COVERED
00-00-1996 to 00-00-1996

4. TITLE AND SUBTITLE
Softwar e Release M anagement

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science,University of
Colorado,Boulder,C0O,80309

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a REPORT b. ABSTRACT c. THISPAGE
unclassified unclassified unclassified

17. LIMITATION OF
ABSTRACT

18. NUMBER | 19a NAME OF
OF PAGES RESPONSIBLE PERSON

20

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



1 INTRODUCTION

The advent of the Internet and the use of component-based technology have each individually
influenced the software development process. The Internet has facilitated geographically distributed
software development by allowing improved communication through such tools as distributed CM
systems, shared whiteboard systems, and real-time audio and video. Component-based technology
has facilitated the construction of software through assembly of relatively large-grained components
by defining standards for component interaction such as CORBA [6]. But, it is their combined
use that has led to a radically new software development process: increasingly, software is being
developed as a “system of systems” by a federated group of organizations.

Sometimes such a process is initiated formally, as when organizations create a virtual enter-
prise [3] to develop software. The virtual enterprise establishes the rules by which dependencies
among the components are to be maintained by the members of the enterprise. Other times it is the
connectivity of the Internet that provides the opportunity to create incidental systems of systems.
For example, applications are typically built using public-domain software as major components,
such as Tcl/Tk [15] for the graphical user interface. The use of public-domain software creates a
dependency that, while less formal than in a virtual enterprise, is no less serious a concern.

In either case, component dependencies create a complex system of systems that is in effect being
developed by a distributed and decentralized group of organizations. Given that the components
of the system are in general pre-existing, independently produced, and independently released
systems themselves, the primary issue involves managing the deployment of the system as a whole.
In particular, the following two problems become evident.

1. To developers of a system of systems, deployment of the system is cumbersome. The develop-
ers must carefully and accurately describe their system, especially in terms of its dependencies
on other systems. Of course, this problem occurs not just at the outermost level of system
construction, but also at all intermediate levels of a hierarchically structured system.

2. To users of a system of systems, the task of locating, retrieving, and tracking the various
components is complicated and error prone. A consistent set of components must be re-
trieved from potentially multiple sources, possibly via multiple methods, and placed within
the context of the local environment.

These problems lead to a need for what we term software release management, which is the process
through which software is made available to and obtained by its users. We have defined such a
process and built a specialized tool to support that process. The tool, called SRM (Software Release
Manager), aids both developers and users in the release process. It is based on two key notions.
First, components should be allowed to reside at physically separate sites, yet the location of each
component should be transparent to those retrieving the component. Second, the dependencies
among components should be explicitly recorded so that they can be understood by users and
exploited by the tool. The tool in particular should use dependency information to automate and
optimize the retrieval of the components.



Figure 1: Dependence Graph of the Arcadia Tools.

In this paper we further motivate the need for software release management by illustrating how,
in a distributed development setting, a lack of appropriate support for software release management
leads to difficulties. We then present a set of requirements for a software release management process
and a tool to support that process. Based on these requirements, we describe the functionality of
our software release management tool, SRM. We then briefly discuss our experience to date in
building and using SRM. We conclude with a look at related work and some directions for the
future.

2 A MOTIVATING EXAMPLE

During the past decade, the Arcadia consortium has developed approximately 50 tools to sup-
port various aspects of the software development process [10]. Arcadia’s research staff is located
at four universities across the US. Typically, each tool is developed, maintained, and released by a
single university. Many of the tools, however, are dependent on tools developed at other sites. The
maintenance of these dependencies has been largely ad hoc, with no common process or infrastruc-
ture in place. Figure 1 shows a graph of the dependencies that existed at one point in time. It
illustrates the fact that the dependencies among the tools are very complex, and hardly manageable
by a human. In fact, the figure presents only a snapshot of the full dependence graph, since it does
not show the evolution of the tools into various versions, each with its own dependencies.

Two recent experiences at the University of Colorado clearly show the need for a process and
tool to support the management of Arcadia software releases. In the first case, one of the Arcadia
tools from a remote site, ProDAG [16], was needed for a project. ProDAG depends on a number of
other tools that were also not present at the University of Colorado. Thus, besides ProDAG, each
of these other tools and, in turn, the tools upon which they transitively depended, needed to be
retrieved and installed. This turned out to be a lengthy and difficult exercise, due to the following
reasons.

o The tools that were needed were distributed from different siles, via different mechanisms.
Typically, FTP sites and/or Web pages were used to provide access to the tools. However,
to obtain a different version than the one “advertised”, someone responsible for the tool had
to be contacted directly.



o The dependency information was scattered over various sources. Dependency information for
a tool could be found in source files, “readme” documentation files, Web pages, and various
other places. Sometimes, dependency information for a single tool could be found in multiple
places.

o The dependency information was incomplete or not even present. Sometimes the dependency
information pointed to a wrong version of a tool, or simply omitted which version of a tool
was needed. In other cases, some of the dependencies were not recorded and could only be
obtained by explicitly asking the person responsible for the tool. Finding the right person
was not always easy because of changes in personnel and responsibilities.

Consequently, retrieving the correct versions of all tools that ProDAG depended on turned out to
take far more time, and far more iterations, than expected.

In the second case, another project was initiated at the University of Colorado that also needed
ProDAG. However, the version of ProDAG that was installed previously was not usable due to the
following reasons.

o For a number of tools on which ProDAG depends, new versions had been released that fized
a number of important bugs. Thus, these versions needed to be obtained and installed.

o The person who initially installed ProDAG at the University of Colorado had left. Conse-
quently, we did not know which versions of the underlying tools were installed.

Thus, even though most of the dependencies had not changed and the correct versions of most of
the tools were already installed, the combination of the above two problems resulted in a complete
re-installation of ProDAG. Of course, during the process of obtaining and installing ProDAG anew,
the same problems surfaced as experienced during the initial installation.

Analyzing the cause of all the above problems, we can identify at least two critical issues that
surface:

o the existence of extremely complex dependencies among components; and
e the lack of user support for location and retrieval of components.

Both are inherent to the software release management problem in cases where software is developed
as a system of systems by a geographically distributed group of organizations. Because the example
above is becoming ever more common, it should be clear that simply making interdependent com-
ponents available individually, and retrieving those components individually, does not encourage
widespread use of large systems of systems. What is needed is a software release management
process that documents the released components, records and exploits the dependencies among the
components, and supports the location and retrieval of groups of compatible components.



3 SOFTWARE RELEASE MANAGEMENT

In the past, when a single organization developed a software system, configuration management
systems (e.g., Aide de Camp [17], ClearCase [1], and Continuus [2]) were used to support software
release management. Once a software system needed to be released, all components of the release
were frozen, labeled, and archived in the configuration management system. Through advertis-
ing, potential users were made aware of the release, who then had to contact the development
organization to obtain the release.

The advent of the Internet has changed this process dramatically. FTP sites and Web pages
allow organizations to make their software available to the whole Internet community, to provide
information about their products, and even to distribute both free trial versions and licensed revenue
versions of their software. In support of the user, there are now search engines, databases, and
indexes that provide a way to locate and retrieve a software system over the Internet.

Notwithstanding the success of this approach to releasing software over the Internet, it is insuf-
ficient to support the release of systems of systems. New requirements, from both developers and
users of such systems, are laid upon software release management. For developers, a software re-
lease management process and support tool should provide a simple way to make software available
to potential users. This entails the following requirements.

e Dependencies should be explicit and easily recorded. It should be possible for a developer
to document dependencies as part of the release process, even if dependencies cross orga-
nizational boundaries. Moreover, this description should be directly usable by the release
management tool for other purposes.

o A system should be available through multiple channels. Once a developer releases a system,
the release management tool should automatically make it available via such mechanisms as
FTP sites and Web pages.

o The release process should involve minimal effort on the part of the developer. For example,
when a new version of a system is to be released, the developer should only have to specify
what has changed, rather than treating the new version as a completely separate entity.

o The scope of a release should be controllable. A developer should be able to specify to whom
the release is visible and to whom it is not.

o A history of retrievals should be kept. This allows developers to track their systems, and to
contact users with announcements of new releases, patches, related products, and the like.

For users, a software release management tool should provide an easy way to locate and retrieve
components. This leads to the following requirements.

o Sufficient descriptive information should be available. Based on this information, a user should
be able to easily determine which (versions of ) systems are of use.



. steA
i’ﬁ;‘f’;ge -— retrieve
database
release / /
interface HETEE
e interface
_—
/ ‘
release i
I . retrieve
release database
siteB

e retrieve
database

Figure 2: SRM Architecture.

o Physical distribution should be hidden. If desired, a user should be unaware of where compo-
nents are physically stored.

o Interdependent systems should be retrievable as a group. A user should be able to retrieve a
system and the systems upon which it depends in one step, rather than having to retrieve
each system individually, thus avoiding possible inconsistencies.

o Unnecessary retrievals should be avoided. Once a system has been retrieved by a user, the
release management tool should keep track of this fact, and not re-retrieve the same system
if subsequently requested.

A software release management process and support tool that satisfy these requirements will al-
leviate the problems evident in our motivating example. They will make it easier for developers
to release systems of systems, and for users to efficiently obtain those systems in an appropriate
configuration.

4 A SOFTWARE RELEASE MANAGER

SRM (Software Release Manager) is a prototype software release management tool that we
have developed over the past year. It was designed to explore the issues involved in satisfying the
requirements presented in the previous section. SRM is based on two key notions: transparent
distribution and the explicit documentation of dependencies. Using these notions, SRM supports
both developers and users in the software release management process.

SRM realizes this support through a four-part architecture: a logically centralized, but physi-
cally distributed, release database; an interface to place components into the release database; an
interface to retrieve components from the release database; and a retrieve database at each user
site to record information about the components already retrieved. This architecture is depicted
in Figure 2. Below, we discuss each part in detail.



site A Web pages site B Web pages
site A components site B components

siteA
physical
repository

siteC
physical
repository

site C Web pages all metadata
site C components all dependencies

Figure 3: Release Database Structure.

4.1 The Release Database

The release database of SRM has been implemented using NUCM, a distributed repository
for versioned artifacts [19]. SRM manipulates NUCM in such a way that the release database
is logically centralized, but physically distributed. It is logically centralized in that it appears
to users of SRM as if they are manipulating a single database; all artifacts from all distributed
sites are visible at the same time. It is physically distributed in that the artifacts are stored in
separate repositories spread across different sites. Fach site corresponds to a separate organization
contributing components to the release database. In particular, when an organization releases a
component, a copy of the component is stored in a repository that is physically present at that
organization.

Figure 3 illustrates the structure of the release database using a hypothetical arrangement of
release information. As we can see, SRM stores four types of artifacts in a release database: the
released components, metadata describing each component, the dependency information for the
components, and Web pages for each component. A detailed description of these types will be
given in later sections. Here we concentrate on the distribution aspects of the release database.

Released components and their corresponding Web pages, which represent the bulk of the data
in the repository, are stored at the site where the components were released. In this way, each
site provides the storage space for its own components. The other artifacts—i.e., the metadata
and the dependency information—are contained in single file that is stored at just one of the sites.
This happens to be site C in Figure 3. We have chosen to centralize the storage of metadata and
dependency artifacts for simplicity reasons. In the future we plan to explore other, distributed
schemes to manage these artifacts.



4.2 The Release Interface

Through the release interface of SRM, developers can release a component to the release
database, modify a release in the release database, or withdraw a release from the release database.
Releases are provided bottom-up with respect to the dependencies, which is to say that before a
component can be released, all other components upon which it depends must have been released.!
The inverse is true for withdrawing a release. The interface has been implemented using Tcl/Tk [15].

4.2.1 Releasing a Component

To release a component, a developer must provide three pieces of information: metadata describ-
ing the component; dependencies of the component on other components; and the source location
of the component.

The metadata consists of, among other things, a component name, a component version, contact
person for the component, the platform(s) the component runs on, and a detailed description of
the component. Based on the metadata information, users that browse the release database can
quickly assess the suitability of a particular component.

The second piece of information that a developer must provide describes the first-level, or
direct, dependencies of the component on other components. SRM is able to calculate transitive
dependencies across multiple components by following paths over first-level dependencies. Figure 4
shows an example of dependency specification. The interface allows for a simple point-and-click
selection of first-level dependencies. In this case there are three that have been selected, LPT 3.1,
Q 3.3, and TAOS 2.0, highlighted by the dark shading. SRM automatically includes a transitive
dependency that it has calculated from previously provided information. In particular, Q 3.3
depends on Arpc 403.4, so this latter system has been highlighted by the lighter shading as a
transitive dependency. The combination of the first-level and transitive dependencies is the set of
dependencies maintained by SRM for the component being released.

It should be noted that although some of the components might have been released at other
sites, specifying them as a dependency for the component being released is as easy as specifying
a locally developed component as a dependency; the release database is transparently distributed.
For example, TAOS resides at the University of California, LPT resides at the University of Mas-
sachusetts, and Q/CORBA resides at the University of Colorado.

The third and final piece of information is the source location of a component. SRM assumes
that a component release is contained in a single file, such as a TAR file or ZIP archive. Since
SRM makes no assumptions about the format of the file, different formats can be used for different
components.

SRM stores all metadata, all dependency information, and a copy of the component itself in
the release database. Old versions of the component are not removed; the new release will co-exist
with the old release as long as the identifier information is unique. Therefore, the release database

'In fact, one could provide releases in any order, although it would not be possible to specify some of the depen-
dencies. The missing dependencies could, and should, be added later using the modify operation.



Please select the tools the release is dependent on:

E ﬁ nit-ﬁ H H A

11-20-199€ Netwnm Unified Configuration Management

ProDAG U 01-14-199¢€| Pr Analysis Gr. System

@ 8@ | 11-04-19%

SEM 1.0 01-29-199¢ Sofware Release Manager

TAGS | zo ] 12-16-18% *
Dismiss | Cear | Print | Help I oK

Figure 4: Specifying Dependencies in SRM.

becomes a source of historical information about the various released components. In essence, the
SRM repository automatically becomes the documentation for the release management process.

4.2.2 Modifying a Release

SRM allows a developer to modify the information describing a release. One simple reason
is that metadata, such as a contact person, may change. A more important reason is to allow
underlying dependencies to change. For example, Q/CORBA [13], as mentioned above, depends
on Arpc [9]. It happened that a new version of Arpc was created to fix a bug. This fix did
not, however, affect the Arpc interface, so no changes to Q/CORBA were required. Once it was
determined that Q/CORBA worked properly with the new version of Arpc, and only then, did
the Q/CORBA dependency on Arpc get switched to the new version using the modify operation.
Notice that a mechanism based on a default dependency, such as “the latest”, would not have
worked in this scenario. This is because the dependency would have switched automatically from
the old to the new before it was verified that the new version was compatible.

4.2.3 Withdrawing a Release

The third operation supported by the release interface allows developers to withdraw compo-
nents from the release database. This functionality is desired for the obvious reasons. Just one
restriction is placed on withdrawal of components, but it is an important one that maintains the
integrity of the database: the only components that can be withdrawn are those components that
no other components are dependent on. For example, since Q/CORBA 3.3 depends on Arpc 403.4,
as shown in Figure 4, Arpc 403.4 cannot be withdrawn from the release database. Thus, if a de-
veloper indeed wants to withdraw Arpc 403.4, either Q/CORBA 3.3 needs to be withdrawn first,
or the dependencies of Q/CORBA 3.3 need to be changed to not include Arpc 403.4.



4.3 The Retrieve Database

At each site that retrieves components using SRM, a retrieve database is maintained. In contrast
to the release database, which is shared among sites, the retrieve database is local to each site and
only site-specific information is stored there. Every time a component is retrieved by a user at a
site, SRM updates the retrieve database at that site. Two pieces of information are important to
the retrieve database: metadata and dependencies. Both are obtained from the release database
and stored unaltered in the retrieve database upon successful retrieval of a component.

There are two major advantages in administering the metadata and dependencies in a local
retrieve database. First, a retrieve database provides users at a site with a central information
store about all components installed at that site. In the current situation, without such a central
information store, users have to look all over a system environment to figure out which components
are present, what functionality is provided by the various components, and what the prerequisites
are for the various components to work properly. A central retrieve database alleviates this problem
by providing a single place where all needed information is kept. FEven if one user retrieves a
component, other users can still use the metadata and dependencies from the retrieve database
to correctly configure and use the component. The second advantage of the retrieve database
concerns the retrieve interface. Since there is a central place to look, the retrieve interface is
capable of assessing which components are already present at a site, and can thus avoid retrieval
of components that are already present at the site.

Given the central role of the retrieve database, and given our expectation that the retrieve
database is going to play a much more important role than simply a data store, one has to be
careful in choosing the schema used by the database. In SRM, we have chosen to base our schema
on the Management Information Format (MIF) [5] developed by the Desktop Management Task
Force (DMTF) as part of the Desktop Management Interface [4]. DMI is a standard framework
that is increasingly followed by hardware vendors to administer their installed components. An
implementation of the standard allows for plug-and-play interoperability among hardware compo-
nents. However, DMI is not only targeted towards hardware, but it is also attempting to unify
hardware and software administration within a single registry. Since DMI is an emerging standard,
we are trying to use MIF as the retrieve database schema. The advantage is that MIF-compatible
tools or browsers will be capable of examining which software components are present at a site.
We have encountered some shortcomings in MIF, and have begun to enhance it, but discussion of
that topic is beyond the scope of this paper.

4.4 The Retrieve Interface

Once components have been placed into the release database, the retrieve interface of SRM
can be used to retrieve the components from the database. To do so, SRM uses information from
both the release and retrieve databases to support a user in locating and retrieving components.
In effect, the retrieve interface forms a bridge between the development environment and the user
environment.



We have experimented with two retrieve interfaces: a dynamic, Java-based interface, and a
static, Web-page-based interface. We discuss each below.

4.4.1 The Java Retrieve Interface

Developing the retrieve interface in Java [18] has two significant advantages. First, the con-
nectivity of the Internet guarantees widespread access to the release database. Standard Internet
browsers, such as Netscape Navigator and Microsoft Explorer, can be used to retrieve components.?
Second, Java applets are inherently active, which means that they are able to execute at the client
site. This dynamism allows real-time interaction with both the user and the retrieve database.

When users want to retrieve a component, they use the Java interface, which can be obtained
through an Internet browser. The browser executes the Java interface applet, allowing a user to
examine the components that are available in the release database. While browsing, both the
metadata describing the various components and the dependencies among the components are
displayed. This allows a user to quickly assess the suitability of the various components.

Once a component is selected, its dependencies are presented to the user. The user can then
manually select which of the dependent components should be retrieved. By examining the local
retrieve database, SRM will have pre-selected the dependencies not already present at the site. Users
can override these defaults, and choose whatever subset of dependencies is desired. During this
process of selecting components, SRM automatically turns off or on, as appropriate, the transitive
dependencies emanating from the selected components. This further simplifies the selection process
for the user and minimizes the set of components to retrieve. Typically, however, there is no need
for a user to manipulate the dependencies, because the dependencies marked by SRM constitute
the minimum set needed to obtain a complete system at the local site. Even as other users retrieve
components, this will be the case, since the central retrieve database administers all retrieved
components at that site.

When a user decides to retrieve a component together with some subset of its dependencies, the
Java interface uses a CGI script [14] to contact the underlying NUCM release database. The CGI
script retrieves the selected components from the various distributed sites and ships them back to
the Java applet. The applet then stores the components at the local site, updating the retrieve
database with the metadata and dependencies of the newly obtained components.

It should be noted that a user of the Java interface is not aware of the fact that the various
components might have originated from several geographically distributed sites. The distribution is
hidden by both the Java interface, which lists all components irrespective of where they originate,
and the CGI script, which silently retrieves the components from the various repositories and ships
them back to the user.

?Ideally, this would happen transparently, but due to security restrictions, the downloaded Java interface applets
currently have to be executed by a spawned browser.

10



4.4.2 The Web Page Interface

The Web page interface was designed to provide an alternative to the Java interface. We need
this alternative for two reasons. First, and most importantly, the Java interface requires a retrieve
database, and it is expected that not every user will want or need such a solution. Second, Java is
still seen as a major security risk by many organizations and, consequently, execution of “foreign”
Java applets is often restricted. Thus, besides creating the dynamic Java interface, we built a static,
Web-page-based interface. Every time a component is released, SRM creates a Web page for that
component and updates a main Web page listing all available components.

When users want to retrieve a component, they first retrieve the main Web page through
their Internet browser. Upon selection of a component from the main Web page, the Web page
corresponding to the selected component will be presented to the user. The contents of this page
is the metadata that were provided upon release of the component. In addition, the Web page
shows the dependence graph for the component and provides selection buttons to turn off or on
dependent components for retrieval. This portion of the interface is shown in Figure 5. In this
example, ProDAG is being retrieved, and three of its four dependencies have been selected for
retrieval as well.

Due to the fact that Web pages are static in nature, SRM is not able to use the dependency
information to turn off or on transitive dependencies on behalf of the user, nor is it able to ma-
nipulate the retrieve databases at local sites. Instead, the user will have to perform dependency
selection manually by examining the dependence graph shown in the page and pressing the ap-
propriate buttons. Other than this the Web page interface is equivalent to the Java interface. It
allows for the retrieval of complete systems at once, using standard Internet browsers, while hiding
distribution from the user.

5 REQUIREMENTS EVALUATION

SRM as it currently stands covers, to a greater or lesser extent, all of the requirements for
software release management that were enumerated above. In particular, it hides distribution and
promotes the use of dependency information. However, it satisfies some of the other requirements
only partially. Specifically, for SRM to fully satisfy all requirements, it needs the following extra
functionality.

e Specification of external dependencies. It cannot be expected that all components of a system
are released to SRM. Typically, some of the components will be under the control of orga-
nizations not employing our tool. One should nevertheless be able to manage such external
dependencies using SRM. We believe that if they are specified as a list of external Web pages
or F'TP sites, it will be straightforward for SRM to deliver a complete system to a user.

e Annotation of dependencies. Not all dependencies are alike. For instance some dependencies
are run-time dependencies, while others are build-time dependencies. If developers were able
to easily describe or annotate dependencies during release, these dependency annotations
could be used to better understand what is required to build, install, and/or execute a system.

11



[#] Hetscape: ProDAG release 2.

Fle FEdit View Go Bookmarks Options Directory Window Helpl

.

UmmmmIbttp://www.cs.colorado.edu/cgi—bin/cgiwra

Software Dependence Graph

ProlfG 2.8

AR

LPT 3.1 TAOS 2.6

N/

B 32.3

l

frpe 483.2

Software Dependencies
I | Arpe 4032
- |LPT31
g3
I |T40820
GetProDAG 20| || GetProDAG 20 and Sclected Softrare Dependencies |
This page was generazed by SEM. "
1]
il T =l

Figure 5: Portion of an SRM Retrieval Web Page.

o Access conlrol. Currently no access control is provided in SRM. A typical software develop-
ment scenario involves different levels of release and different groups of users. For example,
many organizations like to distinguish between alpha, beta, and full releases. Ideally, they
would like to control to whom those different kinds of releases are made available. Clearly,
some sort of access control mechanism is needed.

o Publication of software releases through additional channels. Currently, SRM only publishes
available software over the Internet via either a Java or a Web page interface. These mecha-
nisms need to be complemented with several other means of publishing a release, such as FTP
sites, a developer-controlled mailing list, automatic postings to one or more news groups, and

the like.

Despite its current shortcomings, SRM clearly has advantages over the “label and archive” paradigm
traditionally used for software release management. We have discussed how SRM improves both
the process by which developers make components available to users and the process by which users
obtain the components. Besides these two important improvements, however, SRM has another

12



advantage.

In settings where a virtual enterprise is created by a group of organizations, the old and often
ad hoc release management process employed by the various participating organizations can be
replaced by a single, more disciplined, and unified process employed by all the organizations. Fach of
the organizations is still able to use its own development process, its own configuration management
system, and its own development tools. But the various mechanisms for release management can
be unified under SRM to provide a common point of intersection for the organizations. In this way
the various organizations are flexibly joined at a high level of abstraction. SRM provides developers
a basis for communicating about interdependent components that avoids low-level details of path
names, FTP sites, and/or URLs. Moreover, because SRM maintains all versions of all components
in its release database, and maintains the status of components located at each site in its retrieve
databases, it becomes the language and mechanism for inter-organization communication about
interdependent components.

6 EXPERIENCE

SRM has been implemented using a wide variety of technologies, including Java, MIF,
HTML [12], and Tcl/Tk. In addition, the underlying repository, NUCM, has been implemented as
a CORBA object using the Q/CORBA system [13]. Naturally, putting these technologies together
and deploying the resulting system turned out to be a non-trivial exercise. In fact, because some of
the technologies are new, using them for a complex task such as SRM revealed significant problems
for them in their own right. Below, we discuss the major problems we encountered in implementing
SRM and then present our initial experiences in deploying SRM.

6.1 Implementation Issues

The first problem we encountered in building SRM regarded the interfacing of Tcl/Tk and
CORBA. All of the release interface has been implemented using Tcl/Tk. Since no Tcl/Tk-to-
CORBA communication package is yet available, SRM communicates with the release database
using a series of small interface programs. FEach program is a direct implementation of one of
the NUCM functions specified in its CORBA interface. Each program’s arguments are textual
representations of the input parameters of the interface function it represents, and its output is
a textual representation of the output of the interface function. Thus, for each interface function
that Tcl/Tk needs to access in the NUCM repository, it has to execute the corresponding interface
program. Clearly, this is a very expensive process that slows down the response time of SRM
considerably.

The second implementation problem we encountered regarded the Web page and Java interfaces.
Both the Web pages and the Java programs are generated when a component is released, because
generating them once at release time is much more efficient than generating them every time one
of them is needed. Both the Web pages and the Java programs are stored in the release database,
so that each can be used from all sites. To access them from a standard Internet browser, we had

13



to use CGI scripts [14] to retrieve them from the database and return them to the browser. The
structure of, and logic used in, these CGI scripts is simple as long as a single artifact has to be
returned to a browser. But in the case of the Web interface, the Web page for a component refers
to the corresponding dependence graph, and thus two artifacts have to be returned. Similarly, in
the case of the Java interface, multiple classes have to be returned. This multiple return problem
complicates CGI scripts considerably, because some sort of caching needs to be implemented to
facilitate return of multiple artifacts at the same time.

CGI scripts are the source of another problem. At the University of Colorado, the scripts
execute in a protected environment due to security concerns. Since such an environment is not
as of yet standardized, it is impossible to generalize a scripting solution. Therefore, as part of
installing SRM itself, the CGI scripts will sometimes need to be tailored to adapt to a site’s specific
approach to security.

We encountered another problem related to security. Firewalls turned out to be a major chal-
lenge to overcome in deploying our underlying NUCM release database technology over a wide area
network. The commercial CORBA implementation that we used to create NUCM was not able to
pass requests through the firewall that is in place at the University of Colorado. Consequently, we
had to reimplement NUCM using the Q/CORBA system, which supports communication through
firewalls by using a special portmap program.

The final problem we encountered in implementing SRM was the fact that the MIF standard
is not a good one in which to adequately describe software components. Because of its hardware
orientation, many of the required attributes are superfluous, while others that would be useful and
appropriate are simply missing. Again, a full discussion of the issues is beyond the scope of this

paper.

6.2 SRM Deployment Experience

Currently, SRM is in use as the release management system for the software produced by the
Software Engineering Research Laboratory at the University of Colorado.?> Our experiences with
initial versions of SRM in this setting have allowed us to evaluate the user interface and functionality
provided. Based on the feedback received, many modifications and enhancements have been made
to both the interface and functionality, resulting in the system as presented in the previous sections.

In addition, SRM is currently being deployed at all universities participating in the Arcadia
project. In particular, colleagues at the University of California, Irvine, have set up an SRM
repository for their own use. Initial tests in connecting this repository with the one in Colorado,
and thus using the distributed features of SRM to the fullest, have been extremely successful.
Therefore, we shortly expect SRM to be in use across the Arcadia project, and to make SRM
available to the general public thereafter.

#See http://www.cs.colorado.edu/users/serl for a pointer to our released software.

14



7 RELATED WORK

To date, software release management has received very little attention from either the academic
or the commercial world. There have been only two systems that have directly addressed software
release management: ship [11] and the FreeBSD porting system [8].

AT&T’s ship is an extensive release management system that is strongly tied into a proprietary
software reuse architecture. Unlike SRM, which provides control to both developers and users, ship
places all control in the hands of the developer. A developer decides to which sites a release is to
be shipped, and then ship takes control of the various user sites and installs the necessary software
components there. While doing so, ship maintains small databases of components and versions
installed at the user sites. Using the information in these databases, ship can check for necessary
components being present at the user sites, and report back to the developer site about whether
the installation can be completed or not.

Despite its power, ship still suffers from similarities to the old label and archive paradigm: the
developer is in control, not the user. Moreover, the format used for the local databases is proprietary,
and therefore there is no relation to software retrieved from other sites. Further complicating the
use of shipare the severe restrictions placed on the development of the software to be released. In
particular, the software needs to be developed within a strictly defined hierarchy of directories and
must make use of the proprietary tools associated with the reuse architecture.

The FreeBSD porting system supports the FreeBSD user community by organizing freely avail-
able software into a carefully constructed hierarchy known as the “ports collection”. The system
uses specialized make [7] macros and variables to enable the building of systems in the hierarchy as
well as to manage their associated dependencies. It uses various forms of heuristics to determine
a site’s state and employs the results in building and installing a software package. SRM seems to
be complementary to the FreeBSD porting system. Whereas the emphasis of SRM is on making
software systems available to users and facilitating users in obtaining such software systems, the
emphasis of FreeBSD is on the build and installation process. It is conceivable that the two systems
could cooperate closely to support a user beyond the point where SRM delivers a set of components.
FreeBSD would be responsible for receiving the components delivered by SRM and then building
and installing the components for the user.

Some other systems partially support software release management, but again, they seem to be
complementary to SRM. For example, configuration management systems typically have a facility
to create a software release out of the sources present in the configuration management system,
but do not make such a release available to users. In other cases, software is distributed with an
installation agent that examines the local environment for the necessary components. However,
such agents do not pay attention to the way the software is distributed to a user site. So, although
there is support on either side of the functionality provided by SRM, there seems to be no system
like SRM that specifically sets out to bridge the gap between.

15



8 CONCLUSIONS

The work described here represents a novel approach to the software release process. By means
of a software release management system, SRM, a bridge has been built between the development
process and the deployment process through which both developers and users are supported. To
developers, SRM provides a convenient and uniform way to release interdependent systems to
the outside world. To users, SRM provides a way to retrieve these systems through the well-
known interface of the Internet. For both, the fact that components are released from various
geographically distributed sources is hidden.

Even though the basic idea behind SRM is simple—to provide distribution transparency to the
release of interdependent software components—its fundamental contribution—the awareness and
support for both the development and the deployment processes—is an important one. We believe
much more research is needed to support both at the same level, and intend to use SRM as a
starting point in this research.

Our future plans call for several significant functionality improvements to SRM, including the
accommodation of external dependencies, a mechanism for annotating dependencies, and access
control over releases. In addition, we plan to investigate how different SRM repositories can be
federated to form more flexible hierarchies of organization.

9 ACKNOWLEDGMENTS

This work was supported in part by the Air Force Material Command, Rome Laboratory, and
the Advanced Research Projects Agency under Contract Number F30602-94-C-0253. The content
of the information does not necessarily reflect the position or the policy of the U.S. Government
and no official endorsement should be inferred.

16



(1]

REFERENCES

L. Allen, G. Fernandez, K. Kane, D. Leblang, D. Minard, and J. Posner. ClearCase MultiSite: Support-
ing Geographically-Distributed Software Development. In Software Configuration Management: ICSE
SCM-4 and SCM-5 Workshops Selected Papers, 1995.

Continuus Software Corporation, Irvine, California. Continuus Task Reference, 1994.
W.H. Davidow and M.S. Malone. The Virtual Corporation. Harper Business, 1992.

Desktop Management Task Force. The Desktop Management Interface. Available on the world wide
web at http://www.dmif.org:80/techlinks/white_papers.himl.

Desktop Management Task Force. The Desktop Management Interface and the Management Informa-
tion Format. Available on the world wide web at htip://www.dmif.org:80/techlinks/white_papers.html.

Digital Equipment Corporation, Hewlett-Packard Company, HyperDesk Corporation, NCR Corpora-
tion, Object Design, Inc., and SunSoft, Inc. The Common Object Request Broker: Architecture and
Specification, Version 1.2. Object Management Group, Framingham, Massachusetts, December 1993.

Stuart I. Feldman. Evolution of Make. In Proceedings of the International Workshop on Software
Versioning and Configuration Conirol, pages 413-416, 1988.

FreeBSD Documentation Project. FreeBSD Handbook. Available on the world wide web at http://-
wwuw. freebsd. org/handbook/handbook. himl.

Dennis Heimbigner. Arpc: An augmented remote procedure call system. Technical Report CU-
ARCADIA-100-96, University of Colorado Arcadia Project, Boulder, CO 80309-0430, Revised 19 June
1996. Version 403.4.

R. Kadia. Issues Encountered in Building a Flexible Software Development Environment. In SIGSOFT
’92: Proceedings of the Fifth Symposium on Software Development Environments, pages 169-180. ACM
SIGSOFT, December 1992.

B. Krishnamurthy, editor. Practical Reusable UNIX Software, chapter 3, pages 91-120. John Wiley &
Sons, Inc., New York, 1995.

Massachusetts Institute of Technology/World Wide Web Consortium. Hypertexzt Markup Language —
2.0, 22 September 1995. Available on the world wide web at http://www.w3.org/pub/WWW/MarkUp /-
himl-spec/html-spec_toc.himl.

M.J. Maybee, D.M. Heimbigner, and L.J. Osterweil. Multilanguage Interoperability in Distributed
Systems. In Proceedings of the 18th International Conference on Software Engineering, pages 451-463.
Association for Computer Machinery, March 1996.

National Center for Supercomputing Applications. The CGI Specification. Available on the world wide
web at http://hoohoo.ncsa.uiuc.edu/cgi/interface. himl.

John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing Company, 1994.

D.J. Richardson, T.O. O’Malley, C.T. Moore, and S.L.. Aha. Developing and Integrating ProDAG in the
Arcadia Environment. In SIGSOFT ’92: Proceedings of the Fifth Symposium on Software Development
Environments, pages 109-119. ACM SIGSOFT, December 1992.

17



[17] Software Maintenance & Development Systems, Inc, Concord, Massachusetts. Aide de Camp Configu-
ration Management System, April 1994.

[18] Sun Microsystems Computer Corporation. The Java Language Specification, 11 May 1995.

[19] A. van der Hoek, D. Heimbigner, and A.L. Wolf. A Generic, Peer-to-Peer Repository for Distributed
Configuration Management. In Proceedings of the 18th International Conference on Software Engineer-
ing, pages 308-317. Association for Computer Machinery, March 1996.

18





